Leonard Guarente,1,2, * David A. Sinclair,2,3 and Guido Kroemer2,4,5,6, *
1 Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139
2 Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA
3 Blavatnik Institute, Genetics Department, Harvard Medical School, Boston, MA 02115, USA
4 Centre de Recherche des Cordeliers, Equipe labellise´ e par la Ligue contre le cancer, Universite´ Paris Cite´ , Sorbonne Universite´ , Inserm U1138, Institut Universitaire de France, Paris, France
5 Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
6 Institut du Cancer Paris CARPEM, Department of Biology, Hoˆ pital Europe´ en Georges Pompidou, AP-HP, Paris, France
*Correspondence: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (L.G.), 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (G.K.)
https://doi.org/10.1016/j.cmet.2023.12.007
SUMMARY
Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.
Javier Ganz,1,2,3,8,9 Lovelace J. Luquette,4,8 Sara Bizzotto,1,2,3,5,8 Michael B. Miller,1,3,6 Zinan Zhou,1,2,3 Craig L. Bohrson,4
Hu Jin,4 Antuan V. Tran,4 Vinayak V. Viswanadham,4 Gannon McDonough,6 Katherine Brown,6 Yasmine Chahine,1
Brian Chhouk,1 Alon Galor,4 Peter J. Park,4,7,* and Christopher A. Walsh1,2,3,10,*
1 Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Childrens Hospital, Boston, MA 02115, USA
2 Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
3 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
4 Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
5 Sorbonne Universite´ , Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hoˆ pital de la Pitie´ Salpeˆ trie`re, 75013 Paris, France
6 Department of Pathology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA 02115, USA
7 Division of Genetics, Brigham and Womens Hospital, Boston, MA 02115, USA
8 These authors contributed equally
9 Present address: Merck Research Laboratories, Cambridge, MA 02142, USA
10 Lead contact
*Correspondence: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (P.J.P.), 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (C.A.W.)
https://doi.org/10.1016/j.cell.2024.02.025
Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed wholegenome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4–104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.
原创:伤口治疗及造口护理中心
你知道吗,皮肤是人体最重要的系统之一。我们应该定期呵护她。想要呵护我们的皮肤,就要了解它,今天小编给大家介绍一下,我们人体中面积最大的系统—皮肤的结构。
不管哪种肤质,哪怕是“天生丽质”的人,都会存在或多或少的小毛病,每种不同的肤质可能出现的问题也各有侧重,当皮肤出现问题时就应该警醒了,应该立即审视和调整你的计划,那么我们应该如何科学评估自己的皮肤?今天小编就告诉大家医生及伤口师是如何评估我们的皮肤的。
皮肤是作为人类健康与美丽的象征,当我们最初注意到一个人时,她健康的肌肤往往是形成美好的第一印象的重要因素。
健康与美丽是分不开的,尤其是对皮肤来说,这一点更加重要,如果没有了健康,便根本谈不上皮肤的美丽。
在日常的工作、学习、生活中,难免会有磕磕碰碰,时不时我们的身体就是因某些原因,造成不可避免的伤口出现。有时我们会发现,有些伤口会快速愈合甚至不留痕迹,而有些伤口经久不愈甚至情况愈演愈烈,造成不可挽回的后果,只有我们能够简单的初步认识伤口的各种情况,才能更好地对待我们所发生的一些伤口情况,使其快速愈合,让我们的身体恢复健康。
今天,小编就给大家讲解一下什么是伤口以及伤口的分类。
伤口世界平台生态圈,以“关爱人间所有伤口患者”为愿景,连接、整合和拓展线上和线下的管理慢性伤口的资源,倡导远程、就近和居家管理慢性伤口,解决伤口专家的碎片化时间的价值创造、诊疗经验的裂变复制、和患者的就近、居家和低成本管理慢性伤口的问题。
2019广东省医疗行业协会伤口管理分会年会
扫一扫了解详情:
任何关于疾病的建议都不能替代执业医师的面对面诊断。所有门诊时间仅供参考,最终以医院当日公布为准。
网友、医生言论仅代表其个人观点,不代表本站同意其说法,请谨慎参阅,本站不承担由此引起的法律责任。