Anna Ericsson a,* , Karin Borgstrom¨ b,c , Christine Kumlien a,c,d , Magdalena Gershater Annersten a,c , Tautgirdas Ruzgas b,c , Johan Engblom b,c , Petri Gudmundsson b,c , Victoria Lazer a , Skaidre Jankovskaja b,c , Eva Lavant b,c , Sophia Ågren-Witteschus d , Sebastian Bjorklund ¨ b,d , Saman Salim e,f , Mikael Åstrom¨ g , Stefan Acosta f
a Department of Care Science, Faculty of Health and Society, Malm¨ o University, Malm¨ o, Sweden
b Department of Biomedical Science, Faculty of Health and Society, Malm¨ o University, Malm¨ o, Sweden
c Biofilms – Research Center for Biointerfaces, Malm¨ o University, Malm¨ o, Sweden
d Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Malm¨ o, Sweden
e Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
f Department of Clinical Sciences, Lund University, Malmo, ¨ Sweden
g StatCons, Sweden
ARTICLE INFO
Keywords: Diabetes mellitus Dry feet Prevention Foot-xerosis Self-care
ABSTRACT
Introduction: To minimize the risk of developing foot-ulcers, persons with diabetes are given the advice to daily inspect their feet and to apply skincare formulations. However, commercially available skincare products have rarely been developed and evaluated for diabetes foot care specifically. The primary aim of this randomized controlled trial (RCT) is to evaluate the effects in reducing foot xerosis in persons with diabetes without footulcers using two skincare creams containing different humectants (interventions) against a cream base nonhumectant (comparator). Secondary outcomes are to evaluate differences on skin barrier integrity, lowmolecular weight biomarkers and skin microbiota, microcirculation including transcutaneous oxygen pressure, degree of neuropathy, and HbA1c between intervention-comparator creams.
Methods: Two-armed double-blind RCT, registered in ClinicalTrials.gov Identifier: NCT06427889. With 80 % power, two-tailed significance of 2.5 % in each arm, 39 study persons is needed in each arm, total 78 persons, 98 including dropouts, to be able to prove a reduction of at least one category in the Xerosis Severity Scale with the intervention creams compared to the comparator. In one arm, each participant will treat one foot with one of the intervention creams (Oviderm® or Canoderm®), while the opposite foot will be treated with the comparator cream (Decubal®lipid cream), twice a day. If needed, participants are enrolled after a wash-out period of two weeks. The participants will undergo examinations at baseline, day 14 and day 28.
Discussion: This RCT evaluate the potential effects of humectants in skin creams against foot xerosis in persons with diabetes.
Ha Young Park a , Min Ho Kang a , Guewha Lee b , Jin Woo Kim a,c,*
a Department of Food Science, Sunmoon University, Chungcheongnam-do, Republic of Korea
b Hu evergreen Pharm Inc., Incheon, Republic of Korea
c Center for Next-Generation Semiconductor Technology, Sun Moon University, Chungnam, Republic of Korea
Keywords: Ginseng non-edible callus Extracellular vesicle Skin regeneration Collagen synthesis Proliferation
1 . ABSTRACT
Background: This study aimed to investigate the effects of ginseng non-edible callus-derived extracellular vesicle (GNEV) on skin regeneration, particularly focusing on its impact on proliferation and migration in human dermal fibroblast (HDF).
Methods: GNEV was isolated from ginseng non-edible callus using sequential filtration and size exclusion chromatography (SEC). The extracellular vesicle was characterized using nanoparticle tracking analysis (NTA). HDF was treated with various concentrations of GNEV, and cell viability, proliferation, and migration were assessed using MTT and scratch wound healing assays. Gene expression related to collagen synthesis (TGF-β, SMAD-2, SMAD-3, COL1A1) was measured using RT-PCR.
Results: Treatment of HDF with GNEV resulted in a significant 2.5-fold increase in cell migration compared to the non-treated group. Furthermore, GNEV demonstrated the upregulation of collagen synthesis genes, specifically TGF-β, SMAD-2, SMAD-3, and COL1A1, by 41.7 %, 59.4 %, 60.2 %, and 21.8 %, respectively. These findings indicated that GNEV activates the TGF-β/SMAD signaling pathway, showcasing its potential to induce skin
Conclusions: In conclusion, GNEV exhibits a notable ability to enhance skin regeneration through its stimulatory effects on cell migration and the upregulation of key collagen synthesis genes. The activation of the TGF-β/SMAD signaling pathway further suggests the potential of GNEV as a promising candidate for drug delivery systems in the fields of cosmetics and pharmaceuticals, opening avenues for further research and application in skincare and dermatology
创伤是指由于各种致伤因素导致的机体软组织、骨骼甚至内脏器官等等各个系统的损伤,创伤可以根据发生地点、受伤部位、受伤组织、致伤因素及皮肤完整程度进行分类。 按发生地点分为战争伤、工业伤、农业伤、交通伤、体育伤、生活伤等;按受伤部位分为颅脑创伤、胸部创伤、腹部创伤、各部位的骨折和关节脱位、手部伤等;按受伤类型分为骨折、脱位、脑震荡、器官破裂等;相邻部位同时受伤者称为联合伤(如胸腹联合伤);按受伤的组织或器官分类时,又可按受伤组织的深浅分为软组织创伤、骨关节创伤和内脏创伤。软组织创伤指皮肤、皮下组织和肌肉的损伤,也包括行于其中的血管和神经。单纯的软组织创伤一般较轻,但广泛的挤压伤可致挤压综合征。血管破裂大出血亦可致命。骨关节创伤包括骨折和脱位,并按受伤的骨或关节进一步分类并命名。如股骨骨折、肩关节脱位等。内脏创伤又可按受伤的具体内脏进行分类和命名。如脑挫裂伤、肺挫伤、肝破裂等。同一致伤原因引起两个以上部位或器官的创伤,称为多处伤或多发伤。按致伤因素,分为火器伤、切伤、刺伤、撕裂伤、挤压伤、扭伤、挫伤等。按皮肤完整程度,分为闭合性创伤、开放性创伤等。
伤口世界平台生态圈,以“关爱人间所有伤口患者”为愿景,连接、整合和拓展线上和线下的管理慢性伤口的资源,倡导远程、就近和居家管理慢性伤口,解决伤口专家的碎片化时间的价值创造、诊疗经验的裂变复制、和患者的就近、居家和低成本管理慢性伤口的问题。
2019广东省医疗行业协会伤口管理分会年会
扫一扫了解详情:
任何关于疾病的建议都不能替代执业医师的面对面诊断。所有门诊时间仅供参考,最终以医院当日公布为准。
网友、医生言论仅代表其个人观点,不代表本站同意其说法,请谨慎参阅,本站不承担由此引起的法律责任。