Leonard Guarente,1,2, * David A. Sinclair,2,3 and Guido Kroemer2,4,5,6, *
1 Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139
2 Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA
3 Blavatnik Institute, Genetics Department, Harvard Medical School, Boston, MA 02115, USA
4 Centre de Recherche des Cordeliers, Equipe labellise´ e par la Ligue contre le cancer, Universite´ Paris Cite´ , Sorbonne Universite´ , Inserm U1138, Institut Universitaire de France, Paris, France
5 Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
6 Institut du Cancer Paris CARPEM, Department of Biology, Hoˆ pital Europe´ en Georges Pompidou, AP-HP, Paris, France
*Correspondence: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (L.G.), 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (G.K.)
https://doi.org/10.1016/j.cmet.2023.12.007
SUMMARY
Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.
Javier Ganz,1,2,3,8,9 Lovelace J. Luquette,4,8 Sara Bizzotto,1,2,3,5,8 Michael B. Miller,1,3,6 Zinan Zhou,1,2,3 Craig L. Bohrson,4
Hu Jin,4 Antuan V. Tran,4 Vinayak V. Viswanadham,4 Gannon McDonough,6 Katherine Brown,6 Yasmine Chahine,1
Brian Chhouk,1 Alon Galor,4 Peter J. Park,4,7,* and Christopher A. Walsh1,2,3,10,*
1 Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Childrens Hospital, Boston, MA 02115, USA
2 Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
3 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
4 Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
5 Sorbonne Universite´ , Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hoˆ pital de la Pitie´ Salpeˆ trie`re, 75013 Paris, France
6 Department of Pathology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA 02115, USA
7 Division of Genetics, Brigham and Womens Hospital, Boston, MA 02115, USA
8 These authors contributed equally
9 Present address: Merck Research Laboratories, Cambridge, MA 02142, USA
10 Lead contact
*Correspondence: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (P.J.P.), 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (C.A.W.)
https://doi.org/10.1016/j.cell.2024.02.025
Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed wholegenome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4–104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.
原创:伤口治疗及造口护理中心
糖尿病足是糖尿病后期最严重的并发症之一,据文献统计,糖尿病足的发病率在糖尿病住院病人中约占15%的比例,糖尿病鞋是针对糖尿病足的保护专门研发设计的新型健康鞋,其合适的选材与科学的做工,可有效保护糖尿病足的患者。
足部是糖尿病这个多系统疾病的一个复杂的靶器官。糖尿病患者因周围神经病变与外周血管疾病合并过高的机械压力,可引起足部软组织及骨关节系统的破坏与畸形形成,进而引发一系列足部问题,从轻度的神经症状到严重的溃疡、感染、血管疾病、Charcot关节病和神经病变性骨折。如果积极治疗不能充分解决下肢出现的症状和并发症,则会造成灾难性的后果。因此,在糖尿病患者中开展对足部问题的早期预防和治疗将有重要的意义。
随着现在人们生活水平的逐渐提高,有一种“富贵病”在生活中逐渐出现,渐渐地已经成为生活中的常见病,它就是我们常说的糖尿病。而今天小编不给大家讲糖尿病的相关知识,而是讲一种因糖尿病而引起的一种并发症,它的名字叫糖尿病足!
下肢静脉溃疡
下肢静脉性溃疡,俗称“老烂腿”,是下肢静脉疾病的常见临床表现。下肢静脉性溃疡常常反复发作,溃疡久治不愈,严重影响患者的正常生活,因此一旦出现下肢静脉性溃疡的现象,患者应该及时到正规医院的血管外科就医,以查清病因,对症下药。
伤口世界平台生态圈,以“关爱人间所有伤口患者”为愿景,连接、整合和拓展线上和线下的管理慢性伤口的资源,倡导远程、就近和居家管理慢性伤口,解决伤口专家的碎片化时间的价值创造、诊疗经验的裂变复制、和患者的就近、居家和低成本管理慢性伤口的问题。
2019广东省医疗行业协会伤口管理分会年会
扫一扫了解详情:
任何关于疾病的建议都不能替代执业医师的面对面诊断。所有门诊时间仅供参考,最终以医院当日公布为准。
网友、医生言论仅代表其个人观点,不代表本站同意其说法,请谨慎参阅,本站不承担由此引起的法律责任。