伤口世界

伤口世界

电子邮件地址: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。

Holistic investigation of the anti-wrinkle and repair efficacy of a facial cream enriched with C-xyloside

Shanshan Zang PhD | Juanjuan Chen MS | Cyril Chevalier MS | Ji Zhang MS Shumei Li MS | Hequn Wang PhD | Jing Li MS | Yangdong Chen MS Hongling Xu MS | Le Sheng MS | Zhiming Zhang MS | Jie Qiu PhD

L' Oreal (China) Research and Innovation Center, Shanghai, China

Correspondence

Jie Qiu, L' Oreal (China) Research and Innovation Center, Shanghai, China.

Email: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。

Abstract

Objective: To investigate the repairing and anti-wrinkle efficacy of the facial cream enriched with C-xyloside, aiming at comprehensively evaluating its skin anti- aging effect and clarify its potential mechanism of action.

Methods: The repairing efficacy was studied on 3D epidermis skin model and the antiaging efficacy was studied on ex-vivo human skin. Two clinical studies were conducted with Chinese females. In the first study, 49 subjects aged between 30 and 50 with wrinkle concerns were recruited and instructed to apply the investigational cream containing C-xyloside for 8 weeks. Wrinkles attributes were assessed by dermatologist. Instrumental measurements on skin hydration, trans-epidermal water loss (TEWL), and skin elasticity were also conducted. In the second study, 30 subjects aged between 25 and 60 with self-declared sensitive skin and facial redness were recruited and instructed to apply the cream for 4 weeks. Biomarker analysis of the stratum corneum was conducted through facial tape strips.

Results: The cream improved the histomorphology of the 3D epidermis skin model after SLS stimulation, and significantly increase the expression of LOR and FLG. On human skin, the cream improved the histopathology induced by UV, and significantly increased the protein content of COL I and COL III, collagen density and the number of Ki-67 positive cell of skin compared with model group (n= 3, p< 0.01). The results from the first clinical study demonstrate a significant increased the skin hydration and elasticity by 21.90%, 13.08% (R2) and 12.30% (R5), respectively (n= 49, p< 0.05), and the TEWL values decreased by 33.94% (n= 49, p< 0.05), after 8 weeks application of the cream. In addition, the scores for nasolabial folds, glabellar wrinkle, underneath eye wrinkles, crow's feet wrinkle and forehead wrinkle in the volunteers exhibited a significant reduction of 34.02%, 43.34%, 50.03%, 33.64% and 55.81% respectively (n= 49, p< 0.05). The (rCE)/(fCE) ratio of volunteers based on tape stripping significant increased after using the sample cream (n= 30, p< 0.05).

Conclusion: The cream containing C-xyloside showed improvement of skin wrinkles and enhancement of skin barrier function. These efficacies may be attributed to the fact that the sample cream can increase the expression of skin barrier related proteins LOR and FLG, promote the maturation of cornified envelope, enhance collagen I and III protein expression and stimulate skin cell proliferation, to provide sufficient evidence supporting its antiaging efficacy of skin.

KEYWORDS

anti-wrinkle/repairing/antiaging, C-xyloside, in vitro, skin barrier, tape stripping

Mitigating Glycation and Oxidative Stress in Aesthetic Medicine: Hyaluronic Acid and Trehalose Synergy for Anti-AGEs Action in Skin Aging Treatment

Robert Chmielewski1–3 , Aleksandra Lesiak4,5

1 Prime Clinic, Warsaw, Poland;

2 Positive Pro-Aging Foundation, Warsaw, Poland;

3 URGO Aesthetics Department, URGO, Warsaw, Poland;

4 Dermoklinika Medical Center, Lodz, Poland; 5 Department of Dermatology, Pediatric Dermatology and Oncology, Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders, Medical University of Lodz, Lodz, Poland Correspondence: Aleksandra Lesiak, Department of Dermatology, Pediatric Dermatology and Oncology, Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders, Medical University of Lodz, 16 Pankiewicza Street, Lodz, Poland, 91-738, Email 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。

Abstract: This comprehensive review explores the pivotal roles of glycation and oxidative stress in the aging process of the skin, their targeted therapeutic applications in aesthetic and regenerative medicine, as well as anti-aging interventions. Glycation, a biochemical process involving the non-enzymatic attachment of sugars to proteins, lipids, or nucleic acids, culminates in the formation of Advanced Glycation End products (AGEs). These AGEs are significant contributors to aging and various chronic ailments, triggering oxidative stress and inflammatory pathways, thereby manifesting as wrinkles, diminished skin elasticity, and other age-related dermal alterations. A central focus of this review is the synergistic interplay between Hyaluronic Acid (HA) and Trehalose in combating these aging mechanisms. HA, renowned for its anti-inflammatory and antioxidative properties, assumes a pivotal role in modulating Reactive Oxygen Species (ROS) levels and safeguarding against oxidative damage. Concurrently, trehalose targetsglycation and oxidative stress, exhibiting promising outcomes in augmenting skin health, providing Ultraviolet B (UVB) photoprotection, and manifesting notable anti-photoaging effects. The combined administration of HA and trehalose not only addresses existing skin damage but also confers preventive and reparative benefits, particularly in stabilizing HA and mitigating glycation-induced stress. Their synergistic action significantly enhances skin quality and mitigates inflammation. The implications of these findings are profound for the future of anti-aging therapeutics in aesthetic medicine, suggesting that the integration of HA and trehalose holds promise for revolutionary advancements in preserving skin vitality and health. Moreover this paper underscores the imperative for continued research into the combined efficacy of these compounds, advocating for innovative therapeutic modalities in aesthetic medicine and enhanced strategies for combating aging, glycation, and oxidative stress.

Keywords: hyaluronic acid, trehalose, skin aging, glycation, oxidative stress, anti-aging therapies

Collagen Type VII (COL7A1) as a Longevity Mediator in Caenorhabditis elegans: Anti-Aging Effects on Healthspan Extension and Skin Collagen Synthesis

Juewon Kim1,

*, Hyeryung Kim2 , Woo-Young Seo3 , Eunji Lee3 and Donghyun Cho4

Department of Physiology, Konkuk University College of Medicine, Chungju 27478,

GENINUS Inc., Seoul 05836,

ABIOTECH Co., Ltd., Suwon 16675,

HEM pharma, Suwon 16229, Republic of Korea

Abstract

Longevity genes and senescence-related signaling proteins are crucial targets in aging research, which aims to enhance the healthy period and quality of life. Identifying these target proteins remains challenging because of the need for precise categorization and validation methods. Our multifaceted approach combined bioinformatics with transcriptomic data to identify collagen as a key element associated with the lifespan of the model organism, Caenorhabditis elegans. By analyzing transcriptomic data from long-lived mutants that involved mechanisms such as antioxidation, dietary restriction, and genetic background, we identified collagen as a common longevity-associated gene. We validated these findings by confirming that collagen peptides positively affect lifespan, thereby strengthening the validity of the target. Further verification through healthspan factors in C. elegans and functional assays in skin fibroblasts provided additional evidence of the role of collagen in organismal aging. Specifically, our study revealed that collagen type VII is a significant target protein for mitigating age-related decline. By validating these findings across different aging models and cell-based studies, we present compelling evidence for the anti-aging effects of collagen type VII, highlighting its potential as a target for promoting healthy aging. This study proposes that collagen not only serves as an indicative marker of organismal longevity across various senescence-related signaling pathways, but also offers a mechanistic understanding of skin degeneration. Consequently, collagen is an effective target for interventions aimed at mitigating skin aging. This study underscores the potential of collagen type VII (bonding collagen T7) as a therapeutic target for enhancing skin health and overall longevity.

Key Words: Collagen VII, Healthspan, C. elegans, Skin aging, Bonding collagen

https://doi.org/10.4062/biomolther.2024.127

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received Aug 1, 2024 Revised Sep 10, 2024 Accepted Sep 30, 2024

Published Online Oct 21, 2024

*

Corresponding Author

E-mail: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。

Tel: +82-43-840-3728, Fax: +82-2-2049-6195

Procyanidin A1 from Peanut Skin Exerts Anti-Aging Effects and Attenuates Senescence via Antioxidative Stress and Autophagy Induction

Yajing Li , Lan Xiang and Jianhua Qi *

College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (Y.L.); 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (L.X.)

* Correspondence: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。

Academic Editors: Marina Garcia-Macia and Álvaro F. Fernández

Received: 18 February 2025

Revised: 5 March 2025

Accepted: 5 March 2025

Published: 7 March 2025

Citation: Li, Y.; Xiang, L.; Qi, J. Procyanidin A1 from Peanut Skin Exerts Anti-Aging Effects and Attenuates Senescence via Antioxidative Stress and Autophagy Induction. Antioxidants 2025, 14, 322.

https://doi.org/10.3390/ antiox14030322

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

(https://creativecommons.org/ licenses/by/4.0/)

Abstract: The aging population is steadily increasing, with aging and age-related diseases serving as major risk factors for morbidity, mortality, and economic burden. Peanuts, known as the “longevity nut” in China, have been shown to offer various health benefits, with peanut skin extract (PSE) emerging as a key compound of interest. This study investigates the bioactive compound in PSE with anti-aging potential and explores its underlying mechanisms of action. Procyanidin A1 (PC A1) was isolated from PSE, guided by the K6001 yeast replicative lifespan model. PC A1 prolonged the replicative lifespan of yeast and the yeast-like chronological lifespan of PC12 cells. To further confirm its anti-aging effect, cellular senescence, a hallmark of aging, was assessed. In senescent cells induced by etoposide (Etop), PC A1 alleviated senescence by reducing ROS levels, decreasing the percentage of senescent cells, and restoring proliferative capacity. Transcriptomics analysis revealed that PC A1 induced apoptosis, reduced senescence-associated secretory phenotype (SASP) factors, and modulated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. The antioxidative capacity of PC A1 was also evaluated, showing enhanced resistance to oxidative stress in PC12 cells by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) activity. Moreover, PC A1 induced autophagy, as evidenced by an increase in fluorescence-labeled autophagic compartments and confirmation via Western blot analysis of autophagy-related proteins. In addition, the treatment of an autophagy inhibitor abolished the antioxidative stress and senescence-alleviating effects of PC A1. These findings reveal that PC A1 extended lifespans and alleviated cellular senescence by enhancing oxidative stress resistance and inducing autophagy, positioning it as a promising candidate for further exploration as a geroprotective agent.

Keywords: aging; peanut skin; procyanidin A1; cell senescence; antioxidative stress; autophagy; PI3K/Akt signaling pathway

Discovering Skin Anti-Aging Potentials of the Most Abundant Flavone Phytochemical Compound Reported in Siam Violet Pearl, a Medicinal Plant from Thailand by In Silico and In Vitro Assessments

Chaiyawat Aonsri 1,2 , Sompop Kuljarusnont 3

and Duangjai Tungmunnithum 4,5,*

1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。

2 Unit of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand

3 Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。

4 Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand

5 Le Studium Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France 

Correspondence: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。; Tel./Fax: +66-26448696

Academic Editors: Lina Raudone,˙ Mindaugas Liaudanskas and Sonata Trumbeckaite

Received: 8 January 2025

Revised: 20 February 2025

Accepted: 24 February 2025

Published: 26 February 2025

Citation: Aonsri, C.; Kuljarusnont, S.; Tungmunnithum, D. Discovering Skin Anti-Aging Potentials of the Most Abundant Flavone Phytochemical Compound Reported in Siam Violet Pearl, a Medicinal Plant from Thailand by In Silico and In Vitro Assessments. Antioxidants 202514, 272. https://doi.org/10.3390/ antiox14030272

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).

Abstract: Currently, nutraceuticals and functional food/cosmeceutical sectors are seeking natural molecules to develop various types of phytopharmaceutical products. Flavonoids have been reported in antioxidant and many medical/pharmacological activities. Monochoria angustifolia or Siam violet pearl medicinal plant is the newest species of the genus Monochoria C. Presl, which have long been consumed as food and herbal medicines. Though previous work showed that apigenin-7-O-glucoside is the most abundant antioxidant phytochemical found in this medicinal plant, the report on anti-aging activity is still lacking and needs to be filled in. The objective of this work is to explore anti-aging capacities of the most abundant antioxidant phytochemical reported in this plant using both in silico and in vitro assessments. In addition, pharmacokinetic properties were predicted. Interestingly, the results from both in silico and in vitro analysis showed a similar trend that apigenin-7- O-glucoside is a potential anti-aging agent against three enzymes. The pharmacokinetic properties, such as adsorption, distribution, metabolism, excretion and toxicity (ADMET), of this compound are also provided in this work. The current study is also the first report on anti-aging properties of this Thai medicinal plant. However, the safety and efficacy of future developed products from this compound and clinical study should be determined in the future.

Keywords: flavone; Monochoria angustifolia; flavonoids; medicinal plants; anti-aging; molecular modeling; pharmacological activity; medical benefits

CASIN exerts anti-aging effects through RPL4 on the skin of naturally aging mice

Yijia Zhang1 | Xueer Wang1 | Jianyuan Huang1 | Xinyue Zhang1 | Lingwei Bu1 |

Yarui Zhang1 | Fengting Liang1 | Shenhua Wu1 | Min Zhang1 | Lu Zhang2 |

Lin Zhang1

1 GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China

2 Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China

Correspondence

Lu Zhang, Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.

Email: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 Lin Zhang, GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.

Email: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。

Funding information

National Natural Science Foundation of China, Grant/Award Number: 82073417, 81872514 and 81971297; GDMPA Key Laboratory Project of Scientific and Technological Innovation, Grant/Award

Number: 2023ZDZ12; Guangdong Basic and Applied Basic Research Foundation, Grant/Award Number: 2022A1515010768, 2023A1515012480 and 2024A121301233

Abstract

Skin aging has been associated with the onset of various skin issues, and recent studies have identified an increase in Cdc42 activity in naturally aging mice. While previous literature has suggested that CASIN, a specific inhibitor of Cdc42 activity, may possess anti-aging properties, its specific effects on the epidermis and dermis, as well as the underlying mechanisms in naturally aging mice, remain unclear. Our study revealed that CASIN demonstrated the ability to increase epidermal and dermal thickness, enhance dermal-epidermal junction, and stimulate collagen and elastic fiber synthesis in 9-, 15-, and 24-month-old C57BL/6 mice in vivo. Moreover, CASIN was found to enhance the proliferation, differentiation, and colony formation and restore the cytoskeletal morphology of primary keratinocytes in naturally aging skin in vitro. Furthermore, the anti-aging properties of CASIN on primary fibroblasts in aging mice were mediated by the ribosomal protein RPL4 using proteomic sequencing, influencing collagen synthesis and cytoskeletal morphology both in vitro and in vivo. Meanwhile, both subcutaneous injection and topical application exhibited anti-aging effects for a duration of 21 days. Additionally, CASIN exhibited anti-inflammatory properties, while reduced expression of RPL4 was associated with increased inflammation in the skin of naturally aging mice. Taken together, our results unveil a novel function of RPL4 in skin aging, providing a foundational basis for future investigations into ribosomal proteins. And CASIN shows promise as a potential anti-aging agent for naturally aging mouse skin, suggesting potential applications in the field.

KEYWORDS

CASIN, Cdc42, fibroblast, keratinocyte, ribosome, skin aging