Yajing Li , Lan Xiang and Jianhua Qi *
College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (Y.L.); 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (L.X.)
* Correspondence: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。
Academic Editors: Marina Garcia-Macia and Álvaro F. Fernández
Received: 18 February 2025
Revised: 5 March 2025
Accepted: 5 March 2025
Published: 7 March 2025
Citation: Li, Y.; Xiang, L.; Qi, J. Procyanidin A1 from Peanut Skin Exerts Anti-Aging Effects and Attenuates Senescence via Antioxidative Stress and Autophagy Induction. Antioxidants 2025, 14, 322.
https://doi.org/10.3390/ antiox14030322
Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/ licenses/by/4.0/)
Abstract: The aging population is steadily increasing, with aging and age-related diseases serving as major risk factors for morbidity, mortality, and economic burden. Peanuts, known as the “longevity nut” in China, have been shown to offer various health benefits, with peanut skin extract (PSE) emerging as a key compound of interest. This study investigates the bioactive compound in PSE with anti-aging potential and explores its underlying mechanisms of action. Procyanidin A1 (PC A1) was isolated from PSE, guided by the K6001 yeast replicative lifespan model. PC A1 prolonged the replicative lifespan of yeast and the yeast-like chronological lifespan of PC12 cells. To further confirm its anti-aging effect, cellular senescence, a hallmark of aging, was assessed. In senescent cells induced by etoposide (Etop), PC A1 alleviated senescence by reducing ROS levels, decreasing the percentage of senescent cells, and restoring proliferative capacity. Transcriptomics analysis revealed that PC A1 induced apoptosis, reduced senescence-associated secretory phenotype (SASP) factors, and modulated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. The antioxidative capacity of PC A1 was also evaluated, showing enhanced resistance to oxidative stress in PC12 cells by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) activity. Moreover, PC A1 induced autophagy, as evidenced by an increase in fluorescence-labeled autophagic compartments and confirmation via Western blot analysis of autophagy-related proteins. In addition, the treatment of an autophagy inhibitor abolished the antioxidative stress and senescence-alleviating effects of PC A1. These findings reveal that PC A1 extended lifespans and alleviated cellular senescence by enhancing oxidative stress resistance and inducing autophagy, positioning it as a promising candidate for further exploration as a geroprotective agent.
Keywords: aging; peanut skin; procyanidin A1; cell senescence; antioxidative stress; autophagy; PI3K/Akt signaling pathway
Chaiyawat Aonsri 1,2 , Sompop Kuljarusnont 3
and Duangjai Tungmunnithum 4,5,*
1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。
2 Unit of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
3 Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。
4 Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
5 Le Studium Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
* Correspondence: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。; Tel./Fax: +66-26448696
Academic Editors: Lina Raudone,˙ Mindaugas Liaudanskas and Sonata Trumbeckaite
Received: 8 January 2025
Revised: 20 February 2025
Accepted: 24 February 2025
Published: 26 February 2025
Citation: Aonsri, C.; Kuljarusnont, S.; Tungmunnithum, D. Discovering Skin Anti-Aging Potentials of the Most Abundant Flavone Phytochemical Compound Reported in Siam Violet Pearl, a Medicinal Plant from Thailand by In Silico and In Vitro Assessments. Antioxidants 2025, 14, 272. https://doi.org/10.3390/ antiox14030272
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).
Abstract: Currently, nutraceuticals and functional food/cosmeceutical sectors are seeking natural molecules to develop various types of phytopharmaceutical products. Flavonoids have been reported in antioxidant and many medical/pharmacological activities. Monochoria angustifolia or Siam violet pearl medicinal plant is the newest species of the genus Monochoria C. Presl, which have long been consumed as food and herbal medicines. Though previous work showed that apigenin-7-O-glucoside is the most abundant antioxidant phytochemical found in this medicinal plant, the report on anti-aging activity is still lacking and needs to be filled in. The objective of this work is to explore anti-aging capacities of the most abundant antioxidant phytochemical reported in this plant using both in silico and in vitro assessments. In addition, pharmacokinetic properties were predicted. Interestingly, the results from both in silico and in vitro analysis showed a similar trend that apigenin-7- O-glucoside is a potential anti-aging agent against three enzymes. The pharmacokinetic properties, such as adsorption, distribution, metabolism, excretion and toxicity (ADMET), of this compound are also provided in this work. The current study is also the first report on anti-aging properties of this Thai medicinal plant. However, the safety and efficacy of future developed products from this compound and clinical study should be determined in the future.
Keywords: flavone; Monochoria angustifolia; flavonoids; medicinal plants; anti-aging; molecular modeling; pharmacological activity; medical benefits
原创: 十六点五 中山二院糖尿病足中心
IWGDF(The International Working Group on the Diabetic Foot)是一个以欧美从事糖尿病足工作的专家为主的,有其他大洲有关专家共同组成的,目前国际上有关糖尿病足的预防、诊断、治疗、研究、管理等方面最专业的国际组织之一(基本上没有之一)。
脓腔切开,3型安尔碘纱布填塞一天之后,重新打开伤口,进行第二次清创,这次清创也是非常重要的。一般需要完成三个任务:探查创面、鉴别坏死及感染的组织、仔细清除各种需要清除的组织。
(3)要把足部被细菌侵袭的各个空隙最好都能打开,尤其是足部比较重要的“空隙”,也是为了引流充分。
糖尿病足的创面清创术是最有效的局部抗菌治疗。毛主席很早之前就教导我们:扫把不到灰尘照例不会自己跑掉,糖尿病足清创术就是治疗糖尿病足局部创面上的“灰尘”(细菌)最有效的“扫把”。
糖尿病足创面难愈合的原因很多,但细菌感染是其中最重要的原因。
糖尿病足患者从开始愈合(到了红期,开始出现新的真皮的时候)到了完全愈合(主要是硬痂完全覆盖创面后)时,总是会出现创面附近、或者创面同边的足部,尤其是足背部、足踝部出现比较明显的肿胀,这种肿胀不伴有皮肤发红,但是有时会有触痛,一般没有波动感或有轻微的波动感
伤口世界平台生态圈,以“关爱人间所有伤口患者”为愿景,连接、整合和拓展线上和线下的管理慢性伤口的资源,倡导远程、就近和居家管理慢性伤口,解决伤口专家的碎片化时间的价值创造、诊疗经验的裂变复制、和患者的就近、居家和低成本管理慢性伤口的问题。
2019广东省医疗行业协会伤口管理分会年会
扫一扫了解详情:
任何关于疾病的建议都不能替代执业医师的面对面诊断。所有门诊时间仅供参考,最终以医院当日公布为准。
网友、医生言论仅代表其个人观点,不代表本站同意其说法,请谨慎参阅,本站不承担由此引起的法律责任。